

Erin Heap Exit Presentation

EXIT PRESENTATION Maintaining Balance

Erin Heap Oklahoma Space Grant Consortium Intern Summer 2010

Agenda

Erin Heap Exit Presentation

Agenda

- Personal Background
- Project 1
 - Experiment- Stochastic Resonance
- Project 2
 - Pilot Study
- Experiences at JSC

Personal Background

Erin Heap Exit Presentation

Born in **Harlingen**, **Texas**

Raised in **Maryland**, outside DC

Intern thru OK Space Grant in Neurosciences Lab!

Southern Nazarene
University
Bethany, OK

Research Work
1-2 years. Maybe at the JSC?

Medical School

Project 1- Stochastic Resonance (SR)

Stochastic resonance is a phenomenon in which the response of a non-linear system to a weak input signal is optimized by the presence of a particular non-zero level of noise.

2. Some Sensation

index) vs noise magnitude - McDonnell MD and Abbott PLOS Computational Biology, May 2009, Vol 5 (5)

3. Peak Sensation

4. Decreased Sensation

Threshold of sensation Mechanical Signal

SK Erin Heap Intern Summer 2010

Harry J, Niemi JB, Priplata AA, Collins JJ, IEEE Spectrum, April 2005.

Project 1

Erin Heap Exit Presentation

Goal:

- To develop a countermeasure based on the principle of stochastic resonance for sensorimotor disturbances experienced after long duration space flight.
- We hypothesize that enabling the detection of time-critical relevant imperceptible sensory signals will play a crucial role in improving strategic responses while performing functional tasks during crewmembers' re-adaptation to Earth G.

Research Question:

O What is the optimal amplitude of electrical stimulus to the vestibular organs that will enhance balance performance?

SR Procedure

- 16 healthy subjects with no known neurological condition gave informed consent
- Two sessions per subject
- Subject's stood on 10 cm medium density foam, arms crossed and eyes closed for each trial.
- o Each session 21 trials
 - Three blocks of 7 stimulation trials for 0 to \pm 700 μA levels, randomized
- Each trial lasted 44 seconds: 22 seconds baseline and 22 seconds of stimulation

Stochastic Resonance

- o Postural sway measured using a Kistler force platform and inertial motion sensors (Xsens) attached to head and torso segments.
- 42 total Variables calculated, 6 of interest, focused on rms Fy and COP PL
- Subject's overall rating of the difficulty of the trial recorded on a scale 1-5

Focus

- o Specific Question:
 - O Do subjects have a tendency to improve performance within and/or across the two sessions while standing on unstable surface?
- Average and Standard Deviation for the baseline period across 7 trials per block for each of 6 variables.
- A 3*2 Repeated Measures Analysis of Variance with factors: Session (two levels) and Blocks (3 levels)

SR Results

Erin Heap Exit Presentation

Subject 18 rms Fy

 Intra session learning was most evident in the rms Fy and COP PL variables

SR Results

Erin Heap Exit Presentation

Error Bars= SEM

RMANOVA: Block significant (p<0.05) and Sessions are not significantly different

SR Discussion

- Data shows that learning occurs within but not between sessions.
- Subjects improved the most in the third block.
- Statistically, the third block was different from the first and second.

Pilot Study

- How will adaptation to a novel functional task be affected by postural disturbance?
- o Postural disturbance
 - o Sitting (familiarization)
 - Standing on ground
 - Standing on unstable surface
 - oTwo types of feedback

Pilot Design

Erin Heap Exit Presentation

Procedure

- 5 subjects with no known neurological conditions
- Target displayed for 1 second
- Subject instructed to begin pointing motion after hearing a tone presented one second later
- 75 random presentations of a target on screen in three presentation blocks:
 - 1. no translation (baseline, 13 trials)
 - 2. with translation (adaptation, 49 trials)
 - 3. no translation (after effects, 13 trials)
- o Two surfaces:
 - 1. Stable
 - 2. Unstable

Pilot Design

Erin Heap Exit Presentation

Feedback 1

- The original target and a green dot will be displayed on the screen for a second, as feedback.
- The green dot is the <u>translated location</u> of subject's touch computed by the program.
- The goal is to get the green dot to the center of the target as quickly and accurately as possible. Subject's adjust touch location on screen on each subsequent trial.
- Quadrant and magnitude of translation altered for standing on stable and unstable surface.

Pilot Design

Erin Heap Exit Presentation

Feedback 2

- The original target and a green square will be displayed on the screen for a second, as feedback.
- The green square is the location of where subject <u>should touch</u> relative to target presented.
- The goal is to get the green square to overlap touch location as quickly and accurately as possible. Subject's adjust touch location on screen on each subsequent trial.
- Quadrant and magnitude of translation altered for standing on stable and unstable surface.

Pilot Results

Erin Heap Exit Presentation

O Feedback 1 Results

 Subjects showed adaptation curve for both postures, difference between adaptation rates while standing on the two surfaces.

Pilot Results

- o Feedback 2 Results
 - Subjects showed adaptation curve for both postures, no difference in adaptation rates between postures

Pilot Discussion

Erin Heap Exit Presentation

Limitations of the Pilot Study –

- No difference in the rate of adaptation between postures in Feedback 2 because of outlier data
- Did not show after effects in third block because subjects were conditioned to expect no translation

Pilot Discussion

- Subjects showed adaptation to a pointing task during standing on both stable and unstable surfaces
- Rate of adaptation was slower while standing on the unstable surface

Experiences at the JSC

Erin Heap Exit Presentation

APOLLO 13

SK Erin Heap Intern Summer 2010

20

Acknowledgments

- o Dr. Ajit Mulavara, PhD
- o Dr. Jacob Bloomberg, PhD
- o Matthew Fiedler, M.S.
- o Elisa Allen
- Judith Hayes
- o Jan Cook
- Program Coordinator- Madonna Adams
- o Fellow Interns
- Neurosciences Lab
- Oklahoma Space Grant Consortium
- o JSC
- o NASA

To graduation and beyond!

SK Erin Heap Intern Summer 2010